CLUES: A non-parametric clustering method based on local shrinking
نویسندگان
چکیده
In this paper, we propose a novel non-parametric clustering method based on non-parametric local shrinking. Each data point is transformed in such a way that it moves a specific distance toward a cluster center. The direction and the associated size of each movement are determined by the median of its K-nearest neighbors. This process is repeated until a pre-defined convergence criterion is satisfied. The optimal value of the number of neighbors is determined by optimizing some commonly used index functions that measure the strengths of clusters generated by the algorithm. The number of clusters and the final partition are determined automatically without any input parameter except the stopping rule for convergence. Our experiments on simulated and real data sets suggest that that the proposed algorithm achieves relatively high accuracies when compared with classical clustering algorithms.
منابع مشابه
An Iterative Non-parametric Clustering Algorithm Based on Local Shrinking
In this paper, we propose a new non-parametric clustering method based on local shrinking. Each data point is transformed in such a way that it moves a specific distance toward a cluster center. The direction and the associated size of each movement are determined by the median of its K-nearest neighbors. This process is repeated until a pre-defined convergence criterion is satisfied. The optim...
متن کاملclues: An R Package for Nonparametric Clustering Based on Local Shrinking
This introduction to the R package clues is a (slightly) modified version of Chang et al. (2010), published in the Journal of Statistical Software. Determining the optimal number of clusters appears to be a persistent and controversial issue in cluster analysis. Most existing R packages targeting clustering require the user to specify the number of clusters in advance. However, if this subjecti...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملTabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2007